Rain is a Tricky Thing

We’ve all heard the Luke Bryan song “Rain is a Good Thing”. While it may be a catchy lyric, lack of rain can cause livestock producers to suffer from drought and heat stress issues, while too much rain can leave farmers dealing with flood damage.  This year has been especially testing from those aspects.  The southwest is on fire.  Colorado, Utah, Arizona and New Mexico and areas of Texas, Kansas and Missouri are suffering from extreme drought and wildfires with surrounding areas battling through severe and moderate drought conditions.

DroughtMapJuly19
http://droughtmonitor.unl.edu/CurrentMap.aspx

In contrast, there have been 6 major flooding events due to excessive rain which have been declared disaster states this summer.  There is no denying drought is difficult to handle, but flooding can be just as destructive with obstacles of its own.

flood timeline

To summarize the timeline above:

  • May 30 – Tropical Storm Alberto’s heavy rainfall lead to flash flooding in 10 southeastern states.
  • June 18 – Heavy rainfall in a short period of time lead to flooding mostly affecting the Upper Peninsula of Michigan, and parts of northern Wisconsin and Minnesota.
  • June 20 – Heavy rainfall resulted in river levels rising and floods in northwest Iowa and southeastern South Dakota.
  • June 21 – Some areas of Texas received more than 10 inches of rain in a 48-hour period resulting in flooding.
  • July 3 – Torrential rains resulted in flooding in southern Minnesota.
  • July 17- Heavy rain resulted in flash flooding in Washington D.C. and Massachusetts.

Rain resulting in flooding has several destructive effects on agriculture.  First, damage to infrastructure such as roadways and powerlines.  Dirt and gravel roads may get washed away during a flood, which will limit a livestock producer from checking and accessing animals.  In the event of an evacuation often the animals are unfortunately left to fend for themselves.  It is a challenge to put those access points back in place to get any operation up and running after the flooding.  There will likely be damage to other assets as well such as outbuildings and machinery.

Second, the flood waters may carry sand and other debris with it.  This debris will settle on top of fields and may result in a barrier to the soil, creating a challenge when trying to plant crops or maintain a pasture.  Removing the debris and sand can be financially exhaustive and labor intensive.

Third, heavy rainfall producing floods will likely erode the soil and carry away valuable top soil.  The erosion itself, will leave gaps and divots in fields making the next planting season more difficult with new obstacles in fields.  The loss of top soil means the soil in the field will have less nutrients and likely will have lost aspects related to a healthy soil including structure and beneficial microorganism populations such as mycorrhizal fungi.  It will be important for crop producers and pasture managers to consult with soil health experts such as Lance Gunderson or Emily Shafto at Ward Laboratories Inc. to replenish nutrients and rebuild soil health after a flooding event.

Fourth, if there were standing crops or forages in a field during a significant rain and flood event, those crops and forages likely are damaged.  Powerful rains and hail can physically damage plants.  Therefore, if harvesting for grain or planning to feed these crops or forages mold and mycotoxins should be tested.  Additionally, corn, sorghum, oats, and other nitrate accumulating forages should be tested for nitrates due to the additional stress from flooding.

Finally, field operations may be hindered.  Planting, and harvesting of crops may be delayed due to wet sloppy fields.  If the areas affected produce hay, harvesting, drying and baling all present unique obstacles.

In conclusion, rain is not always a good thing.  Too little leaves us with droughts and too much results in devastating floods.  Always consider the obstacles of these disastrous events and make a plan before they happen to avoid panic when natural disasters occur.

More Resources:

Flood List

Farming After Flooding 

The Impact of Extreme Weather Events on Agriculture in the United States

iGrow Flood Resources

 

2017 KSU Swine Day

A couple of weeks ago I attended Swine Day for the second year in a row.  This event is a great way to remain informed on the latest in swine nutrition research. I would recommend attending for anyone involved in the swine industry.  It is also very interesting to see what the researchers are doing with all of the feed samples that go through Ward Laboratories, INC from the Kansas State University Swine Laboratory. The morning session consisted of quick 15 minute research updates on the projects in Manhattan, KS and with KSU cooperators.  Two presentations that specifically caught my attention were the feed safety presentation by Dr. Cassie Jones and the Limonene presentation by Dr. Jim Nelssen. Finally, I would be doing a disservice to the lab if I did not highlight Dr. Chad Paulk’s presentation on sampling technique from feeders.

I often field phone calls from producers wanting to test for mycotoxins. These toxins are produced from specific strains of mold under certain conditions and often appear together.  At Ward Laboratories, Inc., we only test for Aflatoxin, but always help people find a lab to test with if they would like to test other mycotoxins.  Dr. Jones’ presentation focused on what we can do with contaminated feeds specifically corn grain and how some of our common practices to reduce shrink in feed mills may be contributing to mycotoxin contamination of feeds.  Mycotoxin producing molds often thrive on broken kernels of corn.  Therefore, Dr. Jones analyzed the effect of cleaning corn or separating the broken kernels from the intact kernels on mycotoxin contamination.  She found that cleaning the corn kernels decreased aflatoxin by 26% and fumonisin by 45% in the cleanings.  However, the screenings were concentrated with aflatoxin.  Often these screenings are added back to other feeds to decrease shrinkage in the feed mill.  Thus, hitting home the point that maybe a little shrinkage could be acceptable when taking into account the potential negative effects on animal health. A summary of this research can be found on page 54 of the 2017 Swine Day publication.

In the livestock industry across all species, consumers are driving increasing demand for antibiotic free products in supermarkets.  Therefore, finding alternatives to antimicrobial products that boost performance in a comparable way is a lucrative research goal.  According to Dr. Nelssen, antibiotic alternatives represent a $20 million global industry across all species and, in swine the cost of going antibiotic free is $20.68 / pig due to decreased growth rate.  Therefore, his research compared average daily gain (ADG) in weaned pigs given feed four different feed treatments 1) Carbodox, an antibiotic fed for increased performance, 2) increased concentrations of copper and zinc, 3) the essential oil Limonene 4) a negative control diet.  Limonene is already an approved product (Victus LIV) to replace Tylosin in beef cattle.  The results of his study show that pigs supplemented with copper and zinc together or Limonene had higher ADG than the negative control diet and performed comparably with pigs supplemented with Carbodox.  A summary of this research can be found on page 31 of the 2017 Swine Day Publication.

Many producers who want to sample their feed are often unsure of how to take an accurate and representative sample.  For Hay samples I always refer them to the National Forage Testing Association guidelines, however for swine mixed feeds I have a hard time with a resource to direct them toward.  Dr. Chad Paulk’s presentation focused on quality control in feeds testing.  First, he compared probe samples to hand samples and found that the probe decreases variability among samples.  Then, Dr. Paulk compared sampling individual feeders with taking a composite sample and determined that the composite sample also decreased variability.  Additionally, the results showed that using a probe and a composite sample together reduced the number of samples needed to ensure an accurate result. Dr. Paulk’s final recommendation when taking a mixed feed sample from a feeder is:

  1. Utilize a probe
  2. Take 6 samples from 6 different feeders
  3. Combine those samples for one composite sample

A summary of this research can be found on page 55 of the 2017 Swine Day Publication.

Here just three topics covered of many in this year’s Swine Day at KSU have been highlighted.  I would encourage all involved in this ever changing industry to attend this event in the future and check out the information they have made available through the links I have included below. As for those of you looking to take a feed sample, don’t overlook the importance of an accurate representative sample.  Consider taking advantage of the technique outlined above.

Presentations: https://www.asi.k-state.edu/events/swine-day/presentations.html

Publications: http://newprairiepress.org/kaesrr/vol3/iss7/

4 Considerations For Feeding Hail Damaged Forage And Crop Residues

 

Here in Central Nebraska we have experienced several mid-summer thunderstorms. These hail producing storms have wreaked havoc on crops and forage productivity, particularly in the Broken Bow and Ansley areas. As producers move forward with crop insurance, they will also be scrambling to utilize what is left of their standing row crops and forages. There are three laboratory tests I would recommend to make an informed decision about the remaining forage. Then depending on the results of your laboratory tests, you can determine what your most economical option is.

1. Nitrates

Defoliation due to the pounding hail results in decreased photosynthesis within the plant. This means that the plant can not convert nitrates to protein. The root system of the plant still continues nitrogen uptake, although the plant cannot utilize these nutrients, resulting in the potential accumulation of nitrates in the plant. Nitrate (NO3 – N) levels between 1400 – 2000 ppm can result in abortions while levels higher than 2000 ppm can result in sudden death if not diluted with other sources of roughage. Therefore, nitrate testing of hail damaged forages is highly recommended before making a decision to graze, hay or ensile the forage.

2. Mold and Mycotoxin Potential

Hail damages the outer cell wall of the plant. The cell wall is an immune defense similar to skin on animals. It prevents infectious agents from penetrating, proliferating and using the plant as a food source. When the cell wall is damaged, opportunistic molds may infiltrate and grow. Consequently, when haying or ensiling forage, testing for mold counts is important. Mold counts above 1 million cfu/g impact animal health and lower production potential.
If the forage is a grain producing forage such as corn or milo, a producer may want to inspect the crop to determine if grain has been produced. If there is grain and it is damaged by the hail, mycotoxins become a potential risk when feeding to livestock. Mycotoxins presence may be present even in the absence of a high mold count. If you suspect mycotoxins may be an issue, remember mycotoxins and molds are often produced together however, the absence of one mycotoxin does not mean conditions were not ideal for another mycotoxin to emerge. If haying the hail damaged forage, proper drying can cut down on mold and mycotoxin presence. If ensiling, proper fermentation and additives may reduce the risk of having these agents in the feed.

 

 

3. Relative Feed Value

The relative feed value (RFV) will be less in a hail damaged forage or crop than its intact counterpart. Defoliation caused by the hail results in the removal or the leafy mass of the plant and what remains is the stocks and stems. These parts of the plant are lower in protein and higher in fiber, which results in a lower relative feed value. Additionally, this also means lower total digestible nutrients (TDN), and net energy of gain (NEg), lactation (NEl), and maintenance (NEm). Therefore, when feeding hail damaged forage, testing the protein and energy of the feed is important to determine how much energy and protein supplementation will be needed to meet production goals.

4. Economics

The last thing to consider, and the most important to your bottom line, when determining how to feed a hail damaged forage is what is the most cost effective delivery system based on the results of feed reports. If the nitrate reports came back low and you have the means to supplement cattle in the field to meet energy and protein needs, grazing may be the most cost effective option. Haying may also be an option under that scenario, however, if selling the hay profit margins may be small do to the lowered feed value and potential mold risks associated. Additionally, when haying you must input equipment and fuel costs associated with cutting, windrowing, and baling. If the nitrates levels have been reported between 2000ppm and 3000 ppm ensiling the damaged forage may be a good option as the nitrates can decrease by up to 50% and then be fed back to the animal. Equipment, fuel and storage costs must also be taken into account for ensiling the feed. In the case of moderate nitrates, haying and mixing with a high quality forage, such as alfalfa, to both dilute the nitrates to the appropriate level and meet the difference in protein and energy provided by the damaged forage and the animals requirements, may also be a viable option. Finally, if the nitrates report is high, utilizing the forage as a fertilizer for next years crop may be the only option.

When determining how to best utilize hail damaged forage, always take nitrates, mold and mycotoxin risks into account as well as the lowered feeding value. Consider the man power, equipment, fuel and supplementation costs associated with each option. This will allow you to make the most informed and cost effective decision possible.