Silage for Beef Cattle 2018 Conference

Last week I attended the Silage for Beef Cattle Conference in Mead, NE.  For those of you who put up corn silage, or provide advice for those who do I would highly recommend listening to the online uploads from this conference as well as looking over the proceedings. Here are 8 key concepts I took away from the conference:

  1. Processing is crucial.

Processing of the grain is very important to the digestibility and therefore, energy availability of the corn silage.  It is recommended that there should not be a single intact corn kernel in the final silage product.  To monitor this, separate the forage portion of the silage from the grain and then closely inspect the grain.  Adequate and consistent monitoring through the chopping process is key.

  1. Determining when to harvest is difficult and varies by operation.

As the plant matures fiber increases, kernel hardness increases thereby decreasing the digestibility of the forage and starch portions of the plant.  However, at a more immature stage less corn kernels are present, and the moisture of the plant is too high for ensiling.  Therefore, the recommendation was to harvest a week before or at black layer when the dry matter content of the green chop is between 33 – 38%.  However, the best practices may differ from operation to operation.

  1. Ensiling time is important.

As fermentation time increases, starch digestibility also increases.  For the fermentation to go to completion, it is recommended to ensile at least 90 days, but 120 days would be optimal.

  1. Packing is key to minimize shrink and prevent spoilage.

Delayed packing increases risk of yeast and mold spoilage.  It is also important to pack with enough weight and consistency.  Check out this packing density calculator from University of Wisconsin extension.

  1. Proper covering is also key to prevent shrink and spoilage.

O2 barrier plastics are the best option for covering, however polyethylene coverings are also an option with about a 5% difference in dry matter recovery.

  1. There are lots of ways ensiling can go wrong.

Silage contaminants can come from many different sources including soil, damages plants from hail or insects, manure, wildlife, rodents and birds.  These contaminants can include infectious microorganism such as salmonella, listeria, clostridia and toxin producing molds or undesirable fermentation by-products such as toxic amines or ammonia.

  1. Feeding spoiled corn silage at any inclusion rate is detrimental to rumen health.

Both dry matter intake and digestibility of neutral detergent fiber decrease when spoiled corn silage is included in the diet.  Additionally, when cannulated cattle were examined, the forage mat in the rumen was completely destroyed, again at any inclusion rate of spoiled corn silage.

  1. Producers can determine if they have aerobic deterioration of silage on farm.

At Ward Laboratories, Inc, I often suggest producers who are unsure of their silage to test both mold count and pH.  On farm producers can take the temperature of the center of the pile and other outer locations.  Moldy spots will be 20-30°F hotter, with up to 8 times the coliform forming units of mold than the core of the pile.

Again, this is a snapshot of the important information shared at the corn silage conference.  Check out the online uploads and consider sending your silage samples to Ward Laboratories Inc. to test for nutrient contents, pH, moisture and mold count.

Carbohydrates and Forage Quality

The function of carbohydrates in any animal’s diet is to provide energy.  Some carbohydrates are more easily digestible and provide energy to the animal, or in the case of the beef cattle, to the rumen microbes more rapidly.  These carbohydrates are Non-Fiber Carbohydrates (NFC). Examples of NFC are starch and sugars, such as glucose and fructose, which are measured at Ward Laboratories Inc. as Total Sugars Invert (TSI).  Starch is also analyzed at Ward Laboratories Inc.  by breaking down the polysaccharide into simple sugars.  An example of a high starch forage is good quality corn silage.  An example of a high sugar forage is high quality alfalfa hay or haylage.

Samples dissolving into buffer on the hot plate with stir bars for starch analysis




Fibrous carbohydrates such as cellulose, hemicellulose and lignin are slowly digested.  In ruminant nutrition the two fiber types we typically use in formulation of feed rations and in evaluation of forage quality are Neutral Detergent Fiber (NDF) and Acid Detergent Fiber (ADF).  The indigestible and slowly digestible portion of feed is represented by NDF which contains cellulose, hemicellulose, and lignin.  The least digestible portion of feed is represented by ADF and contains cellulose and lignin but not hemicellulose.  Therefore, ADF is always less than NDF when represented as a percentage of the feed or forage being analyzed.

ADF and NDF are measured using Ankom bag technology.

The Neutral Detergent Fiber of a feed makes up the floating mat of feed in the rumen.  This floating mat physically stimulates the animal’s digestive processes, specifically rumination.  A high NDF feed typically forms a mat that exists for a longer period of time in the rumen resulting in the animal feeling full longer due to the physical gut fill and consequently consuming less feed.  In summary, high NDF feeds, typically low-quality forages, are predictive of low dry matter intake, while low NDF feeds are predictive of a higher dry matter intake.

Acid Detergent Fiber is used in predictive equations to calculate the energy content of the feed.  Total Digestible Nutrients (TDN), Net Energy of Gain (NEg) and Net Energy of Maintenance (NEm) can all be calculated using the ADF value.  Feeds with a higher percentage of ADF have a lower percentage of the high energy sugars and starches.  Therefore, high ADF feeds and forages have lower energy values and low ADF feeds and forages have high energy values.

At Ward Laboratories Inc. I receive phone calls inquiring about why certain forage reports have higher Relative Feed Values (RFV) or Relative Forage Qualities (RFQ) than others or why those two index values do not match for the same feed.

Relative Feed Value was created to quickly compare the quality of legume hays such as alfalfa or clover. We often apply this index to other forages, or feeds forgetting the original purpose and loosing the understanding that it was not originally meant to be applied to grass hays, corn stalks and especially not corn grains and other non-forage feeds.  Therefore, non-legume forages typically have lower than expected RFVs and animals consuming this hay perform better than the index value would predict.

Relative Forage Quality was created to be inclusive of most forages and is a quick way to fairly compare one forage to another weather it is a grass hay or legume.  The values for RFV and RFQ on the same feed often are separated by as much as 20 points because RFV uses ADF and NDF to predict digestible dry matter and dry matter intake while RFQ uses crude protein, fat, NDF, NDF digestibility among other factors to predict dry matter intake and total digestible nutrients.  South Dakota State University Extension has put together a great resource for better understanding of RFV and RFQ.  Below are the simplified equations for each index:

RFV = Digestible Dry Matter × Dry Matter Intake / 1.29

RFQ=Dry Matter Intake × Total Digestible Nutrients /1.23

    In conclusion, carbohydrates provide energy to the beef cow and support the growth and role rumen microbes play in ruminant digestion.  The higher percentage of the forage or hay is made up of fibrous fractions, such as ADF and NDF, the less NFC are available to rapidly provide energy.  Therefore, as ADF and NDF increase the forage quality decreases due to lower energy values and declining feed intake.  So, when feeding low quality forages such as old cane hay or corn stalks it is important to provide energy supplements in the form of beet pulp, distillers grains, corn grains or molasses based liquid supplements for example. However, on low ADF and NDF, high quality forages little to no supplementation is needed to support animal maintence and production performance.